Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.309
1.
Nat Commun ; 15(1): 3978, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729926

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Arabidopsis Proteins , Arabidopsis , Cell Membrane , Chloride Channels , Golgi Apparatus , Salt Stress , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis/drug effects , Cell Membrane/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Golgi Apparatus/metabolism , Chloride Channels/metabolism , Chloride Channels/genetics , Gene Expression Regulation, Plant , Protein Transport/drug effects , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Plants, Genetically Modified
2.
BMC Plant Biol ; 24(1): 376, 2024 May 08.
Article En | MEDLINE | ID: mdl-38714947

BACKGROUND: Casuarina equisetifolia (C. equisetifolia) is a woody species with many excellent features. It has natural resistance against drought, salt and saline-alkali stresses. WRKY transcription factors (TFs) play significant roles in plant response to abiotic stresses, therefore, molecular characterization of WRKY gene family under abiotic stresses holds great significance for improvement of forest trees through molecular biological tools. At present, WRKY TFs from C. equisetifolia have not been thoroughly studied with respect to their role in salt and saline-alkali stresses response. The current study was conducted to bridge the same knowledge gap. RESULTS: A total of 64 WRKYs were identified in C. equisetifolia and divided into three major groups i.e. group I, II and III, consisting of 10, 42 and 12 WRKY members, respectively. The WRKY members in group II were further divided into 5 subgroups according to their homology with Arabidopsis counterparts. WRKYs belonging to the same group exhibited higher similarities in gene structure and the presence of conserved motifs. Promoter analysis data showed the presence of various response elements, especially those related to hormone signaling and abiotic stresses, such as ABRE (ABA), TGACG (MeJA), W-box ((C/T) TGAC (T/C)) and TC-rich motif. Tissue specific expression data showed that CeqWRKYs were mainly expressed in root under normal growth conditions. Furthermore, most of the CeqWRKYs were up-regulated by NaCl and NaHCO3 stresses with few of WRKYs showing early responsiveness to both stresses while few others exhibiting late response. Although the expressions of CeqWRKYs were also induced by cold stress, the response was delayed compared with other stresses. Transgenic C. equisetifolia plants overexpressing CeqWRKY11 displayed lower electrolyte leakage, higher chlorophyll content, and enhanced tolerance to both stresses. The higher expression of abiotic stress related genes, especially CeqHKT1 and CeqPOD7, in overexpression lines points to the maintenance of optimum Na+/K+ ratio, and ROS scavenging as possible key molecular mechanisms underlying salt stress tolerance. CONCLUSIONS: Our results show that CeqWRKYs might be key regulators of NaCl and NaHCO3 stresses response in C. equisetifolia. In addition, positive correlation of CeqWRKY11 expression with increased stress tolerance in C. equisetifolia encourages further research on other WRKY family members through functional genomic tools. The best candidates could be incorporated in other woody plant species for improving stress tolerance.


Plant Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Sodium Chloride/pharmacology , Phylogeny , Sodium Bicarbonate/pharmacology , Salt Stress/genetics , Stress, Physiological/genetics , Genome, Plant
3.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743266

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Arabidopsis , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Salt-Tolerant Plants , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Amino Acid Sequence , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Salt Stress/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism
4.
J Biosci ; 492024.
Article En | MEDLINE | ID: mdl-38726824

Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.


Cicer , Germination , Mitochondria , Mitochondrial Proteins , Nitric Oxide , Oxidative Stress , Oxidoreductases , Plant Proteins , Superoxides , Cicer/growth & development , Cicer/drug effects , Cicer/metabolism , Plant Proteins/metabolism , Germination/drug effects , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Superoxides/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/pharmacology , Gene Expression Regulation, Plant/drug effects , Pyruvic Acid/metabolism
5.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732273

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Droughts , Melatonin , Plant Roots , Salinity , Seedlings , Seeds , Triticum , Melatonin/pharmacology , Triticum/drug effects , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Triticum/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Seeds/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/genetics , Stress, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Salt Stress , Sodium Chloride/pharmacology , Antioxidants/metabolism , Water/metabolism
6.
BMC Plant Biol ; 24(1): 270, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605311

Barley (Hordeum vulgare L.) is a significant cereal crop belonging to Poaceae that is essential for human food and animal feeding. The production of barley grains was around 142.37 million tons in 2017/2018. However, the growth of barley was influenced by salinity which was enhanced by applying a foliar spray of salicylic acid. The current study investigated to evaluated the potential effect of SA on the barley (Hordeum vulgare L.) plants under salinity stress and its possible effects on physiological, biochemical, and growth responses. The experiment was conducted at Postgraduate Research Station (PARS), University of Agriculture; Faisalabad to assess the influence of salicylic acid on barley (Hordeum vulgare L.) under highly saline conditions. The experiment was conducted in a Completely Randomized Design (CRD) with 3 replicates. In plastic pots containing 8 kg of properly cleaned sand, two different types of barley (Sultan and Jau-17) were planted. The plants were then watered with a half-strength solution of Hoagland's nutritional solution. After the establishment of seedlings, two salt treatments (0 mM and 120 mM NaCl) were applied in combining three levels of exogenously applied salicylic acid (SA) (0, 0.5, and 1 mg L-1). Data about morphological, physiological, and biochemical attributes was recorded using standard procedure after three weeks of treatment. The morpho-physiological fresh weight of the shoot and root (48%), the dry mass of the shoot and root (66%), the plant height (18%), the chlorophyll a (30%), the chlorophyll b (22%), and the carotenoids (22%), all showed significant decreases. Salinity also decreased yield parameters and the chl. ratio (both at 29% and 26% of the total chl. leaf area index). Compared to the control parameters, the following data was recorded under salt stress: spike length, number of spikes, number of spikelets, number of tillers, biological yield, and harvest index. Salicylic acid was used as a foliar spray to lessen the effects of salinity stress, and 1 mg L-1 of salicylic acid proved more effective than 0.5 mg L-1. Both varieties show better growth by applying salicylic acid (0 mg L-1) as a control, showing normal growth. By increasing its level to (0.5 mg L-1), it shows better growth but maximized growth occurred at a higher level (1 mg L-1). Barley sultan (Hordeum vulgare L.) is the best variety as compared to Jau-17 performs more growth to mitigate salt stress (0mM and 120mM NaCl) by improving morpho-physiological parameters by enhancing plan height, Root and shoot fresh and dry weights, as well as root and shoot lengths, photosynthetic pigments, area of the leaves and their index, and yield attributes and reduce sodium ions.


Hordeum , Humans , Hordeum/physiology , Chlorophyll A , Salicylic Acid/pharmacology , Sodium Chloride/pharmacology , Salt Stress , Salinity
7.
Physiol Plant ; 176(2): e14296, 2024.
Article En | MEDLINE | ID: mdl-38650503

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Betaine , Choline Dehydrogenase , Salt Tolerance , Betaine/metabolism , Salt Tolerance/genetics , Choline Dehydrogenase/metabolism , Choline Dehydrogenase/genetics , Choline/metabolism , Chlorophyceae/genetics , Chlorophyceae/physiology , Chlorophyceae/enzymology , Chlorophyceae/metabolism , Microalgae/genetics , Microalgae/enzymology , Microalgae/metabolism , Molecular Docking Simulation , Sodium Chloride/pharmacology
8.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612475

MAPKKs, as one of the main members of the mitogen-activated protein kinase (MAPK) cascade pathway, are located in the middle of the cascade and are involved in many physiological processes of plant growth and development, as well as stress tolerance. Previous studies have found that StMAPKK5 is responsive to drought and salt stress. To further investigate the function and regulatory mechanism of StMAPKK5 in potato stress response, potato variety 'Atlantic' was subjected to drought and NaCl treatments, and the expression of the StMAPKK5 gene was detected by qRT-PCR. StMAPKK5 overexpression and RNA interference-mediated StMAPKK5 knockdown potato plants were constructed. The relative water content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as proline (Pro) and malondialdehyde (MDA) contents of plant leaves, were also assayed under drought and NaCl stress. The StMAPKK5 interacting proteins were identified and validated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). The results showed that the expression of StMAPKK5 was significantly up-regulated under drought and NaCl stress conditions. The StMAPKK5 protein was localized in the nucleus, cytoplasm, and cell membrane. The expression of StMAPKK5 affected the relative water content, the enzymatic activities of SOD, CAT, and POD, and the proline and MDA contents of potatoes under drought and salt stress conditions. These results suggest that StMAPKK5 plays a significant role in regulating drought and salt tolerance in potato crop. Yeast two-hybrid (Y2H) screening identified four interacting proteins: StMYB19, StZFP8, StPUB-like, and StSKIP19. BiFC confirmed the authenticity of the interactions. These findings suggest that StMAPKK5 is crucial for potato growth, development, and response to adversity.


Solanum tuberosum , Solanum tuberosum/genetics , Droughts , Saccharomyces cerevisiae , Sodium Chloride/pharmacology , Salt Stress , Proline , Superoxide Dismutase , Water
9.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38612913

Salt is frequently introduced in ecosystems, where it acts as a pollutant. This study examined how changes in salinity affect the survival and development of zebrafish from the two-cell to the blastocyst stage and from the blastocyst to the larval stage. Control zebrafish embryos were cultured in E3 medium containing 5 mM Sodium Chloride (NaCl), 0.17 mM Potassium Chloride (KCL), 0.33 mM Calcium Chloride (CaCl2), and 0.33 mM Magnesium Sulfade (MgSO4). Experiments were conducted using increasing concentrations of each individual salt at 5×, 10×, 50×, and 100× the concentration found in E3 medium. KCL, CaCl2, and MgSO4 did not result in lethal abnormalities and did not affect early embryo growth at any of the concentrations tested. Concentrations of 50× and 100× NaCl caused embryonic death in both stages of development. Concentrations of 5× and 10× NaCl resulted in uninflated swim bladders in 12% and 65% of larvae, compared to 4.2% of controls, and caused 1654 and 2628 genes to be differentially expressed in blastocysts, respectively. The ATM signaling pathway was affected, and the Sonic Hedgehog pathway genes Shh and Ptc1 implicated in swim bladder development were downregulated. Our findings suggest that increased NaCl concentrations may alter gene expression and cause developmental abnormalities in animals found in affected ecosystems.


Hedgehog Proteins , Perciformes , Animals , Hedgehog Proteins/genetics , Sodium Chloride/pharmacology , Water , Zebrafish/genetics , Calcium Chloride , Ecosystem , Sodium Chloride, Dietary , Larva/genetics , Gene Expression
10.
Physiol Plant ; 176(2): e14282, 2024.
Article En | MEDLINE | ID: mdl-38591354

In nature, drought and salt stresses often occur simultaneously and affect plant growth at multiple levels. However, the mechanisms underlying plant responses to drought and salt stresses and their interactions are still not fully understood. We performed a meta-analysis to compare the effects of drought, salt, and combined stresses on plant physiological, biochemical, morphological and growth traits, analyze the different responses of C3 and C4 plants, as well as halophytes and non-halophytes, and identify the interactive effects on plants. There were numerous similarities in plant responses to drought, salt, and combined stresses. C4 plants had a more effective antioxidant defense system, and could better maintain above-ground growth. Halophytes could better maintain photosynthetic rate (Pn) and relative water content (RWC), and reduce growth as an adaptation strategy. The responses of most traits (Pn, RWC, chlorophyll content, soluble sugar content, H2O2 content, plant dry weight, etc.) to combined stress were less-than-additive, indicating cross-resistance rather than cross-sensitivity of plants to drought and salt stresses. These results are important to improve our understanding of drought and salt cross-resistance mechanisms and further induce resistance or screen-resistant varieties under stress combination.


Droughts , Hydrogen Peroxide , Hydrogen Peroxide/pharmacology , Sodium Chloride/pharmacology , Plants , Water , Salt Stress , Stress, Physiological
11.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1089-1101, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38658151

Vitamin C plays an important role in plant antioxidation, photosynthesis, growth and development, and metabolism. In this study, a gene AhPMM, which is involved in vitamin C synthesis and responds significantly to low temperature, NaCl, polyethylene glycol (PEG) and abscisic acid (ABA) treatments, was cloned from peanut. An AhPMM overexpression vector was constructed, and transferred to a peanut variety Junanxiaohong using the pollen tube injection method. PCR test on the T3 generation transgenic peanut plants showed a transgenics positive rate of 42.3%. HPLC was used to determine the content of reducing vitamin C (AsA) and total vitamin C in the leaves of transgenic plants. The results showed that the content of AsA in some lines increased significantly, up to 1.90 times higher than that of the control, and the total vitamin content increased by up to 1.63 times compared to that of the control. NaCl and ABA tolerance tests were carried out on transgenic seeds. The results showed that the salt tolerance of transgenic seeds was significantly enhanced and the sensitivity to ABA was weakened compared to that of the non-transgenic control. Moreover, the salt tolerance of the transgenic plants was also significantly enhanced compared to that of the non-transgenic control. The above results showed that AhPMM gene not only increased the vitamin C content of peanut, but also increased the salt tolerance of transgenic peanut seeds and plants. This study may provide a genetic source for the molecular breeding of peanut for enhanced salt tolerance.


Abscisic Acid , Arachis , Ascorbic Acid , Plants, Genetically Modified , Stress, Physiological , Arachis/genetics , Arachis/metabolism , Ascorbic Acid/biosynthesis , Ascorbic Acid/metabolism , Plants, Genetically Modified/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/biosynthesis , Sodium Chloride/pharmacology
12.
Physiol Behav ; 279: 114544, 2024 May 15.
Article En | MEDLINE | ID: mdl-38574794

The sodium glucose cotransporter 1 (SGLT1) has been proposed as a non-T1R glucosensor contributing to glucose taste. Studies have shown that the addition of NaCl at very weak concentrations to a glucose stimulus can enhance signaling in the gustatory nerves of mice and significantly lower glucose detection thresholds in humans. Here, we trained mice with (wild-type; WT) and without (knockout; KO) a functioning T1R3 subunit on a two-response operant detection task to differentially respond to the presence or absence of a taste stimulus immediately after sampling. After extensive training (∼40 sessions), KO mice were unable to reliably discriminate 2 M glucose+0.01 M NaCl from 0.01 M NaCl alone, but all WT mice could. We then tested WT mice on a descending array of glucose concentrations (2.0-0.03 M) with the addition of 0.01 M NaCl vs. 0.01 M NaCl alone. The concentration series was then repeated with glucose alone vs. water. We found no psychophysical evidence of a non-T1R taste transduction pathway involved in the detection of glucose. The addition of NaCl to glucose did not lower taste detection thresholds in WT mice, nor did it render the stimulus detectable to KO mice, even at 2 M. The proposed pathway must contribute to functions other than sensory-discriminative detection, at least when tested under these conditions. Detection thresholds were also derived for fructose and found to be 1/3 log10 lower than for glucose, but highly correlated (r = 0.88) between the two sugars, suggesting that sensitivity to these stimuli in this task was based on a similar neural process.


Glucose , Taste , Humans , Mice , Animals , Glucose/metabolism , Mice, Knockout , Taste/physiology , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Receptors, G-Protein-Coupled/metabolism , Sodium , Mice, Inbred C57BL
13.
World J Microbiol Biotechnol ; 40(6): 165, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630187

Bacterial reduction of hexavalent chromium (VI) to chromium (III) is a sustainable bioremediation approach. However, the Cr(VI) containing wastewaters are often characterized with complex conditions such as high salt, alkaline pH and heavy metals which severely impact the growth and Cr(VI) reduction potential of microorganisms. This study investigated Cr(VI) reduction under complex haloalkaline conditions by an Alteromonas sp. ORB2 isolated from aerobic granular sludge cultivated from the seawater-microbiome. Optimum growth of Alteromonas sp. ORB2 was observed under haloalkaline conditions at 3.5-9.5% NaCl and pH 7-11. The bacterial growth in normal culture conditions (3.5% NaCl; pH 7.6) was not inhibited by 100 mg/l Cr(VI)/ As(V)/ Pb(II), 50 mg/l Cu(II) or 5 mg/l Cd(II). Near complete reduction of 100 mg/l Cr(VI) was achieved within 24 h at 3.5-7.5% NaCl and pH 8-11. Cr(VI) reduction by Alteromonas sp. ORB2 was not inhibited by 100 mg/L As(V), 100 mg/L Pb(II), 50 mg/L Cu(II) or 5 mg/L Cd(II). The bacterial cells grew in the medium with 100 mg/l Cr(VI) contained lower esterase activity and higher reactive oxygen species levels indicating toxicity and oxidative stress. In-spite of toxicity, the cells grew and reduced 100 mg/l Cr(VI) completely within 24 h. Cr(VI) removal from the medium was driven by bacterial reduction to Cr(III) which remained in the complex medium. Cr(VI) reduction was strongly linked to aerobic growth of Alteromonas sp. The Cr(VI) reductase activity of cytosolic protein fraction was pronounced by supplementing with NADPH in vitro assays. This study demonstrated a growth-dependent aerobic Cr(VI) reduction by Alteromonas sp. ORB2 under complex haloalkaline conditions akin to wastewaters.


Alteromonas , Chromium , Metals, Heavy , Sodium Chloride/pharmacology , Cadmium , Lead/toxicity , Wastewater , Metals, Heavy/toxicity
14.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673755

Natronorubrum daqingense JX313T is an extremely halophilic archaea that can grow in a NaCl-saturated environment. The excellent salt tolerance of N. daqingense makes it a high-potential candidate for researching the salt stress mechanisms of halophilic microorganisms from Natronorubrum. In this study, transcriptome analysis revealed that three genes related to the biosynthesis of vitamin B12 were upregulated in response to salt stress. For the wild-type (WT) strain JX313T, the low-salt adaptive mutant LND5, and the vitamin B12 synthesis-deficient strain ΔcobC, the exogenous addition of 10 mg/L of vitamin B12 could maximize their cell survival and biomass in both optimal and salt stress environments. Knockout of cobC resulted in changes in the growth boundary of the strain, as well as a significant decrease in cell survival and biomass, and the inability to synthesize vitamin B12. According to the HPLC analysis, when the external NaCl concentration (w/v) increased from 17.5% (optimal) to 22.5% (5% salt stress), the intracellular accumulation of vitamin B12 in WT increased significantly from (11.54 ± 0.44) mg/L to (15.23 ± 0.20) mg/L. In summary, N. daqingense is capable of absorbing or synthesizing vitamin B12 in response to salt stress, suggesting that vitamin B12 serves as a specific compatible solute effector for N. daqingense during salt stress.


Gene Expression Profiling , Salt Stress , Vitamin B 12 , Vitamin B 12/metabolism , Sodium Chloride/pharmacology , Transcriptome , Salt Tolerance/genetics , Gene Expression Regulation, Archaeal
15.
PeerJ ; 12: e17219, 2024.
Article En | MEDLINE | ID: mdl-38650645

Abiotic stress caused by soil salinization remains a major global challenge that threatens and severely impacts crop growth, causing yield reduction worldwide. In this study, we aim to investigate the damage of salt stress on the leaf physiology of two varieties of rice (Huanghuazhan, HHZ, and Xiangliangyou900, XLY900) and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress. Rice leaves were sprayed with 5.0 µmol·L-1 Hemin or 25.0 µmol·L-1 ZnPP (Zinc protoporphyrin IX) at the three leaf and one heart stage, followed by an imposed salt stress treatment regime (50.0 mmol·L-1 sodium chloride (NaCl)). The findings revealed that NaCl stress increased antioxidant enzymes activities and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the two varieties. However, spraying with Hemin increased the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt stress.


Antioxidants , Glutathione , Hemin , Oryza , Salt Stress , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Hemin/pharmacology , Antioxidants/metabolism , Salt Stress/drug effects , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Ascorbic Acid/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Sodium Chloride/pharmacology , Catalase/metabolism , Superoxide Dismutase/metabolism , Seedlings/drug effects , Seedlings/metabolism
16.
Sci Rep ; 14(1): 7970, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575652

Dietary salt has been associated with cognitive impairment in mice, possibly related to damaged synapses and tau hyperphosphorylation. However, the mechanism underlying how dietary salt causes cognitive dysfunction remains unclear. In our study, either a high-salt (8%) or normal diet (0.5%) was used to feed C57BL/6 mice for three months, and N2a cells were cultured in normal medium, NaCl medium (80 mM), or NaCl (80 mM) + Liraglutide (200 nM) medium for 48 h. Cognitive function in mice was assessed using the Morris water maze and shuttle box test, while anxiety was evaluated by the open field test (OPT). Western blotting (WB), immunofluorescence, and immunohistochemistry were utilized to assess the level of Glucagon-like Peptide-1 receptor (GLP-1R) and mTOR/p70S6K pathway. Electron microscope and western blotting were used to evaluate synapse function and tau phosphorylation. Our findings revealed that a high salt diet (HSD) reduced the level of synaptophysin (SYP) and postsynaptic density 95 (PSD95), resulting in significant synaptic damage. Additionally, hyperphosphorylation of tau at different sites was detected. The C57BL/6 mice showed significant impairment in learning and memory function compared to the control group, but HSD did not cause anxiety in the mice. In addition, the level of GLP-1R and autophagy flux decreased in the HSD group, while the level of mTOR/p70S6K was upregulated. Furthermore, liraglutide reversed the autophagy inhibition of N2a treated with NaCl. In summary, our study demonstrates that dietary salt inhibits the GLP-1R/mTOR/p70S6K pathway to inhibit autophagy and induces synaptic dysfunction and tau hyperphosphorylation, eventually impairing cognitive dysfunction.


Cognitive Dysfunction , Liraglutide , Mice , Animals , Liraglutide/pharmacology , Sodium Chloride, Dietary/adverse effects , Glucagon-Like Peptide-1 Receptor/metabolism , Sodium Chloride/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Mice, Inbred C57BL , Signal Transduction , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , TOR Serine-Threonine Kinases/metabolism , Cognition
17.
BMC Plant Biol ; 24(1): 247, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38575856

Pea (Pisum sativum L.), a globally cultivated leguminous crop valued for its nutritional and economic significance, faces a critical challenge of soil salinity, which significantly hampers crop growth and production worldwide. A pot experiment was carried out in the Botanical Garden, The Islamia University of Bahawalpur to alleviate the negative impacts of sodium chloride (NaCl) on pea through foliar application of ascorbic acid (AsA). Two pea varieties Meteor (V1) and Sarsabz (V2) were tested against salinity, i.e. 0 mM NaCl (Control) and 100 mM NaCl. Three levels of ascorbic acid 0 (Control), 5 and 10 mM were applied through foliar spray. The experimental design was completely randomized (CRD) with three replicates. Salt stress resulted in the suppression of growth, photosynthetic activity, and yield attributes in pea plants. However, the application of AsA treatments effectively alleviated these inhibitory effects. Under stress conditions, the application of AsA treatment led to a substantial increase in chlorophyll a (41.1%), chl. b (56.1%), total chl. contents (44.6%) and carotenoids (58.4%). Under salt stress, there was an increase in Na+ accumulation, lipid peroxidation, and the generation of reactive oxygen species (ROS). However, the application of AsA increased the contents of proline (26.9%), endogenous AsA (23.1%), total soluble sugars (17.1%), total phenolics (29.7%), and enzymatic antioxidants i.e. SOD (22.3%), POD (34.1%) and CAT (39%) in both varieties under stress. Salinity reduced the yield attributes while foliarly applied AsA increased the pod length (38.7%), number of pods per plant (40%) and 100 seed weight (45.2%). To sum up, the application of AsA alleviated salt-induced damage in pea plants by enhancing photosynthetic pigments, both enzymatic and non-enzymatic activities, maintaining ion homeostasis, and reducing excessive ROS accumulation through the limitation of lipid peroxidation. Overall, V2 (Sarsabz) performed better as compared to the V1 (Meteor).


Antioxidants , Ascorbic Acid , Antioxidants/metabolism , Pisum sativum , Reactive Oxygen Species , Chlorophyll A , Lipid Peroxidation , Sodium Chloride/pharmacology , Salt Stress
18.
Plant Cell Rep ; 43(5): 132, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687389

KEY MESSAGE: Salt tolerance, selenium accumulation and expression of the responsive genes were analyzed in the wheat high selenium mutants. Selenium is an essential trace element for the human body, and its deficiency can lead to various diseases such as Keshan disease and large bone disease. Wheat, being a major staple crop, plays a crucial role in providing dietary selenium supplementation to combat this deficiency. Despite progress in understanding the molecular regulation of selenium accumulation in certain crops, the molecular mechanisms governing selenium accumulation-related gene expression in wheat plants remain poorly understood. In this study, three mutant wheat lines with elevated selenium content were identified. Under the treatment of Na2SeO3 or NaCl, the selenium-rich wheat mutants exhibited decreased sensitivity to both selenium and NaCl compared to the wild type. Additionally, there was an increase in the activities of SOD and POD, while the content of MDA decreased. Through qRT-PCR analysis, the expression of selenium-related genes was affected, revealing that some of these genes not only regulate the response of wheat to salt stress, but also play a role in the process of selenium accumulation. The transcriptome results revealed that the important genes encoding glutathione S-transferases, peroxidases, superoxide dismutases, and UDP-glucosyltransferases may function in the regulation of salt tolerance and selenium accumulation in wheat. These findings significantly contribute to the current understanding of the molecular regulation of selenium accumulation in wheat crops, while also offering novel germplasm resources for cultivating selenium-rich and salt-tolerant wheat lines.


Gene Expression Regulation, Plant , Mutation , Selenium , Triticum , Triticum/genetics , Triticum/metabolism , Selenium/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Genes, Plant , Transcriptome/genetics , Gene Expression Profiling
19.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Article En | MEDLINE | ID: mdl-38593488

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Homeostasis , Phospholipase D , Plant Proteins , Populus , Salt Stress , Arabidopsis/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Phospholipase D/metabolism , Phospholipase D/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plants, Genetically Modified , Populus/metabolism , Populus/genetics , Populus/drug effects , Reactive Oxygen Species/metabolism , Salt Stress/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Two-Hybrid System Techniques
20.
Plant Physiol Biochem ; 210: 108548, 2024 May.
Article En | MEDLINE | ID: mdl-38552263

Salt stress is an important abiotic stress that seriously affects plant growth. In order to research the salt tolerance of walnut rootstocks so as to provide scientific basis for screening salt-tolerant walnut rootstocks, two kinds of black walnut seedlings, Juglans microcarpa L. (JM) and Juglans nigra L. (JN), were treated under salt stress with different concentrations of NaCl (0, 50, 100, and 200 mM) and the growth situation of seedlings were observed. The physiological indexes of JM and JN seedlings were also measured in different days after treatment. Our study showed salt stress inhibited seedlings growth and limited biomass accumulation. Walnut mainly increased osmotic adjustment ability by accumulation Pro and SS. Furthermore, with the duration of treatment time increased, SOD and APX activities decreased, TPC and TFC contents increased. Walnut accumulated Na mostly in roots and transported more K and Ca to aboveground parts. The growth and physiological response performance differed between JM and JN, specifically, the differences occurred in the ability to absorb minerals, regulate osmotic stress, and scavenge ROS. Salt tolerance of JM and JN was assessed by principal component analysis (PCA) and resulted in JN > JM. In conclusion, our results indicated that JN has higher salt tolerance than JM, and JN might be used as a potential germplasm resource for the genetic breeding of walnuts.


Juglans , Salt Tolerance , Seedlings , Juglans/physiology , Juglans/metabolism , Juglans/drug effects , Seedlings/drug effects , Seedlings/physiology , Seedlings/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/physiology , Superoxide Dismutase/metabolism , Sodium Chloride/pharmacology
...